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A B S T R A C T   

The working environment of fruit-picking robots is very complicated. Generally, there are a large number of 
obstacles such as branches, immature crops, etc. Besides, the agricultural scene is not as static. For sampling- 
based methods such as Probabilistic RoadMap (PRM) and Rapidly-exploring Random Trees (RRT), they suffer 
from inferior path quality in obstacle condensed environments. This paper proposes a local search path planning 
method in the feasible region of fruit-picking robots based on discrete workspace guidance and configuration 
space exploration correction. It is used to plan the motion of fruit-picking robots for avoiding obstacles and 
grasping in dynamic and complex agricultural environments. First, the workspace is discretized, which makes the 
location information of obstacles computable. Then, a connected region path is found to guide the robot to search 
in the local configuration space. This greatly improves the continuity of the generated paths in the configuration 
space. The local search is further used to correct the weights of discrete regions of the workspace to find better 
connected paths with higher planning speed. The experimental results show that the quality of paths planned by 
proposed method is generally better than that of RRT and RRT-CONNECT, and the planning speed is faster than 
that of Task-Space RRT (TSRRT). Proposed algorithm enables real-world picking at 10.5 piece/s and a recovery 
rate of 80.0 %. This method significantly improves the path quality in dynamic and complex agricultural 
scenarios.   

1. Introduction 

In agriculture, fruit-picking is a very laborious task that needs to be 
improved by applying robotic technology. The picking operation re
quires the robot to identify the target crops and environmental obstacles 
in a complex and dynamic environment. Then, plan a feasible and high- 
quality path that allows the robotic arm to quickly reach the desired 
position and execute the picking action. For multi-joint robots in in
dustrial scenes and there are relatively mature methods to solve such 
problems, such as PRM (Kavraki et al., 1996), RRT (LaValle and Kuffner 
1999), etc. However, in agricultural scenarios, these methods may not 
be directly applicable. Bac et al. surveyed the literature on autonomous 
picking robots and pointed out that more than half of the studies did not 
include motion planning (Bac et al., 2014). The problem is due to the 
complex and changing environment as compared to industrial scenarios. 
This results in poor quality paths generated by sampling-based planning 

methods with many redundant waypoints. To implement path planning 
in agricultural scenarios, a planning algorithm that can generate high- 
quality paths is urgently needed. 

In collision-free path planning for grasping robots, a variety of al
gorithms have been proposed, including the artificial potential field and 
the A* algorithm. Khatib uses the artificial potential field to complete 
the path planning task of grasping robots (Khatib 1986). In (Van Henten 
et al., 2003), the A* algorithm was applied to cucumber picking. How
ever, these methods can only solve the planning problem of 2 − 3 de
grees of freedom (DOF) robots. It is because the spatial properties of 
obstacles need to be accurately described, which increases the compu
tational complexity exponentially with the increase in the degrees of 
freedom. Moreover, the actual complex agricultural scene was over
simplified, for example, the cucumber rattan was considered as two 
cylinders. 

Since then, the emergence of algorithms such as RRT and PRM has 
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provided solutions to robot motion planning in industrial scenarios. 
Yang et al. used RRT to realize path planning for the hybrid manipulator 
with a high degree of freedom and complex structure (Yang et al., 2017). 
However, the RRT algorithm has a very slow convergence speed due to 
the use of a global uniform random sampling strategy. 

In order to solve the planning problem in narrow areas, some re
searchers have proposed a class of methods called ’guided planning’, 
which are similar to proposed method. Holleman proposes to use the 
central axis of the workspace in PRM to guide planning (Holleman and 
Kavraki, 2000). Jory Denny introduces the method of workspace medial 
axis guidance in RRT (Denny et al. 2014), which improves the robot’s 
ability to explore in obstacle gaps. Later, he proposed an optimization 
scheme and introduced Dynamic Region to guide exploration (Denny 
et al. 2020). Vonásek searches for an auxiliary path before planning 
(Vonásek et al. 2009), and uses the auxiliary path to guide the explo
ration, which improves the path quality and planning speed. Then, he 
guided the exploration and improved the performance of the algorithm 
by finding multiple approximate solutions (Vonásek and Pěnička, 2019). 
Attali synthesizes previous experience and encapsulates many seemingly 
distinct prior works under the same framework for guided exploration 
(Attali et al. 2022). 

Other researchers, such as Kinston et al. proposed three approaches 
to explore constrained manifolds, and presented the basic framework of 
sampling-based planning with manifold constraints (Kingston et al., 
2019). Considering the picking process as a multi-link task, path plan
ning involves the multi-modal problem. Hauser et al. discretely sampled 
the continuous space by constructing a transition tree in the continuous 
modal transition space to avoid exact computation in the continuous 
space (Hauser and Ng-Thow-Hing 2011). Plaku et al. proposed the 
SyCLop algorithm, which is the earliest layered collaborative algorithm 
for motion planning with dynamic constraints (Plaku et al., 2010). 
Kinston et al. used SyCLop for multi-modal planning and solved the 
modal switching problem (Kingston et al., 2020). However, these 
methods mainly focus on traditional planning problems and have not 
been used in practical scenarios, especially in complex and dynamic 
agricultural environments. 

In agricultural scenarios, because the environment is dynamic and 
more complex than the industrial environment, it is difficult to obtain 
satisfactory planning results with sampling-based planning for robots 
with low degrees of freedom. The hierarchical collaborative algorithm, 
frequently used for path planning of ultra-high-degree-of-freedom ro
bots, utilizes the precise obstacle information of the workspace. It gen
erates discrete layers after discretizing the workspace and plans the 
working path of the robot in the discrete layers. A continuous layer is 
formed in the continuous configuration space, which is used to verify 
whether the working path planned by the discrete layer is feasible and 
adjust the path weight. Due to the use of accurate obstacle information, 
the quality of the path generated is significantly improved compared 
with the sampling-based planning methods. It is also more suitable for 
high-complexity and high-dynamic agricultural scenarios. 

Before path planning, grasping in agricultural scenarios also needs to 
consider system calibration, the recognition of targets and obstacles, 
grasping strategies, grasping pose estimation and other issues. Yang 
et al. have developed an efficient Tool Center Point (TCP) calibration 
method based on inherited constraints of target object (Yang et al., 
2021). Tao et al. proposed a method to identify apples, branches and 
leaves based on color and 3D features (Tao and Zhou 2017). For tomato 
grabbing, they analyzed the viscoelastic characteristic of tomatoes and 
derived an efficient method for tomato grabbing (Tao et al., 2017). Guo 
et al. proposed a state-of-art point cloud processing-based pre-grasp 
planning method, which was tested on a variety of fruits and obtained 
reliable pose estimation results (Guo et al., 2020). 

In agricultural scenarios, robot motion planning methods in various 
fruit harvesting tasks have currently been considered. Schuetz et al. 
designed a global optimization algorithm to determine the optimal 
motion trajectory of the manipulator when it picks bell peppers in an 

assembly line to achieve higher picking efficiency (Schuetz et al., 2015). 
Cao et al. used RRT to complete lychee picking task and introduced the 
concept of target gravity into the RRT algorithm to speed up the path 
search (Cao et al., 2019). Ahlin et al. proposed the Void Space path 
planning for apple picking (Ahlin et al., 2017). However, this method 
only plans the end effector, ignoring the interaction between the 
manipulator itself and the environment. Ye et al. introduced the target 
gravity concept and adaptive coefficient adjustment into the Bi-RRT 
algorithm to make it applicable in high-dimensional environments (Ye 
et al., 2021). However, the average computation time for a path is 4.24 s, 
which greatly affects the picking efficiency. Furthermore, Wang et al. 
proposed a smooth trajectory planning method for fruit-picking robots, 
but they mainly focused on smoothing the picking trajectory and 
ignored the actual difficulty of avoiding obstacles with multi-degree-of- 
freedom manipulators in complex dynamic environments (Wang et al., 
2022). 

Some researchers have studied planning based on vision. Mehta et al. 
achieved precise picking of citrus with 95 % confidence (Mehta and 
Burks 2014). Strawberry picking was achieved by Han et al. (Han et al., 
2012) and Hayashi et al. (Hayashi et al. 2010). However, it is common in 
picking environments where leaves and stems occlude the target. Using 
vision-based methods in densely vegetated environments will fail to 
localize the target crops due to occlusion. Chiang et al. combined deep 
reinforcement learning with the classic RRT algorithm to provide a more 
efficient solution to the robotic arm planning problem (Chiang et al., 
2019). James et al. used Q-Learning to implement reinforcement 
learning for robotic grasping in 3D simulation (James and Johns 2016). 
Lin, Guichao et al. also used reinforcement learning to plan picking 
paths for guava (Lin et al., 2021). Experiments in the simulation envi
ronment have certain scalability, but in the real environment (especially 
the picking environment) it is highly complex and dynamic, and cannot 
be fully learned. Robots are likely to fail to move when they encounter 
unexpected obstacles. Currently, deep reinforcement learning is rarely 
used in fruit picking robots. 

In this paper, we propose a local search path planning method in 
complex agricultural dynamic scenarios. It uses the information of target 
crops and environmental obstacles identified for planning. The obtained 
target and obstacle information is first obtained through binocular 
target recognition, calibration and shape and position reconstruction. 
Then, the continuous configuration space is discretized into smaller 
local areas in the working space. The feasible region of a fruit-picking 
robot is obtained from discretized workspace guidance and configura
tion space exploration correction. When the exploration of a local space 
exceeds the time limit, the algorithm will automatically update the 
connectivity weights between regions. More high-quality and reliable 
paths are then generated. 

In the next section, Section 2, our hierarchical planning algorithm 
will be presented in detail. In Section 3, the experimental results will be 
evaluated, including a comparison between proposed algorithm and 
traditional sampling-based motion planning algorithms, and the sensi
tivity analysis of the algorithm space decomposition granularity. Section 
4 contains the conclusions and implications of this work. 

2. Methodology 

In the agricultural picking scene, the distribution of obstacles is often 
very dense and the fruits and the branches of the plants are stacked and 
staggered. In such a complex environment, the robot needs to avoid 
obstacles in the working space, and also needs to plan a continuous and 
smooth path in the configuration space, which is quite difficult. To 
provide sufficient flexibility, grasping robots often have high degrees of 
freedom. The dual-arm system even needs to cooperate in avoiding 
collisions. This becomes a major challenge in the planning of picking 
robots. Fig. 1 illustrates the visualization of the simulated scene. The 
Kinect-V2 camera is used to obtain RGB-D images of the scene, and the 
extended Mask-RCNN network is used to perform precise semantic 
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recognition of the target fruit (Gong et al., 2022). The rest of the point 
cloud, including tree branches and leaf obstacles, are considered ob
stacles. Furthermore, the robot is also modeled in a simulation 
environment. 

The planning method proposed in this paper is a probabilistically 
complete motion planning algorithm specially tailored for the multi- 
DOF flexible picking robotic arm platform as shown in Fig. 1. The 
basic flow of the algorithm is shown in Fig. 2. To facilitate a better 
understanding of the algorithmic concept, we will first clarify the defi
nitions of robot workspace and configuration space before introducing 

the algorithm. The workspace refers to the set of spatial points that the 
robot end effector can reach during its motion, primarily characterized 
by the spatial pose of the robot’s end effector. The configuration space 
refers to the collection of all possible configurations of the robot, where 
a robot configuration represents a complete representation of the posi
tions of each point on the robot, primarily characterized by the positions 
of each degree of freedom of the robot. The idea is first to discretize the 
workspace into smaller local regions. Secondly, plan a channel in the 
workspace to connect the starting point to the target and avoid obstacles 
while searching in the configuration space. Thirdly, when the 

Fig. 1. An illustration of tomato picking scene.  

Fig. 2. The flow chart of the proposed algorithm.  
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configuration space exploration time in the current region is too long, 
the algorithm automatically updates the connectivity weights between 
regions. Finally, the algorithm uses the new weights to plan new paths in 
the workspace. In summary, the search direction is guided in the 
continuous configuration space from the discrete workspace, while the 
progress of the search in the continuous configuration space is fed back 
to the discrete layer. This enables the algorithm to recalculate the most 
promising new directions in the workspace. 

The pseudocode is provided in Algorithm 1, which primarily aims to 
illustrate the algorithmic concept of the path planning method proposed 
in this paper. The algorithm follows a two-step approach: first, per
forming path planning in the discretized workspace to identify block- 
based paths within the workspace; and second, exploring the configu
ration space within each workspace region to determine robot config
uration motion paths that connect the paths within the workspace. The 
steps carried out in the workspace and configuration space are high
lighted in the pseudocode using blue and yellow highlights, respectively. 
The workspace is first discretized into several regions Ri, which are 
stored in the set D, and then the roadmap is initialized with qstart as the 
root node. The main loop of the algorithm first plans the expected 

exploration order 
[
R(j)

i

]k

j=1
. The variable i denotes the number of the 

region in the discretization regions, the superscript j represents the 
number of the region in order, and the usage of superscript k and 
subscript j outside the square brackets is similar to the superscript and 
subscript of the series. This expected exploration order connects the 
starting configuration and the target configuration corresponding to the 
regions Rstart and Rgoal in the workspace and does not include the region 
where the obstacles are located. At the same time, the order is the 
shortest path in the current set of regions D. Subsequently, {R(j)

i } is 
randomly sampled based on the workspace properties, and then adds the 
sampling points to the roadmap (V, E). Next, it checks whether the 
vertices in V can be connected, and updates the edge set E of the road
map. When a feasible solution is found, the algorithm returns this so
lution. If the coverage and connectivity of each region in the expected 
exploration order are not improved within limited times, it will be fed 
back to the workspace to correct the weight of the corresponding region. 
After the weights are corrected, an expected exploration order is recal
culated with a certain probability p2, and then configuration space 
sampling and roadmap updating are restarted. These procedures repeat 
until a feasible solution is found or the algorithm times out. Both p1 and 
p2 in Algorithm 1 are hyperparameters, where p1 is a parameter used to 
influence random exploration and directed exploration, and p2 is the 
probability used to terminate meaningless exploration.  

Algorithm 1 Path Planning Algorithm 

Input: Starting point qstart , target point qgoal, workspace W , configuration space Q , 
maximum computation time tmax > 0, maximun sampling times nmax, coverage 
threshold c1, connectivity threshold c2, hyperparameters p1,p2. 
Output: A feasible solution or null. 

1: D ← DC(W ); // Decomposing the workspace 
2: RM.Init(qstart); // Initialize the roadmap 

3: while t < tmax do 
4: a1← Random(0,1); // Generate random numbers in the range 
(0,1) 

5: if a1 < p1 then 

6:
[
R

(j)
i

]k

j=1
←GetExplorationOrder(); // Generate the desired 

exploration order randomly 
7: else 
8: D .updateweights(); // Update the weights of discrete regions 

9: 
[
R

(j)
i

]k

j=1
←GetExplorationOrder(D ); // Generate the desired 

exploration order from D 

10: end if 
11: for i ∈ {1, 2,⋯nmax} do  

12: q←WS
([

R
(j)
i

]k

j=1

)

// The workspace-guided sampling 

algorithms is detailed in Algorithm 2 

(continued on next column)  

(continued ) 

Algorithm 1 Path Planning Algorithm 

13: RM.update(q);  

14: if RM.ispath
(

qstart , qgoal

)
then  

15: return RM.path
(

qstart , qgoal

)
// Check if there is a feasible 

path connecting qstart and qgoal 

16: end if  
17: if cov(i) − cov(i − 1) ≤ c1 and con(i) − con(i − 1) ≤ c2 then // 
Check the coverage and connectivity 
18: a2← Random(0,1); // Generate random numbers in the range 
(0,1)  
19: if a2 < p2 then 
20: Break; // Jump to step 4 
21: end if  
22: end if  
23: end for 
24: end while 
25: return NULL  

2.1. Workspace 

Workspace processing includes two main parts: the decomposition of 
the workspace and the calculation of the expected exploration order. 
Decomposition deals with how to discretize the workspace and how to 
express various elements after discretization. The computation of the 
expected exploration order concerns how to build a chain of connected 
regions linking the origin and target points from the discrete workspace 
and avoiding obstacles, and how to set and apply the region weights. 

Let the workspace W be the three-dimensional Euclidean space, i.e., 
W⊂R3, containing the robot and environmental obstacles. The work
space is discretized into n regions Ri, that is, W = R1 ∪ R2 ∪ ⋯ ∪ Rn. 
Besides, for ∀Ri,Rj⊂W, only the boundaries of Ri and Rj overlap. Define 
the set of the edges E between the Ri and its physically adjacent region 
Rj, that is, (Ri, Rj) ∈ E. Furthermore, define function 
LocateRegion:W→{R1, ⋯, Rn}. Therefore, the discrete regions contain 
Rstart and Rgoal where the starting configuration qstart and the target 
configuration qgoal are located can also be determined. 

Many methods can be applied to the decomposition of the work
space. Here, a simple size consistent grid is used and the workspace is 
divided uniformly. The decomposition produces the set of regions {Ri} 
and Rstart , Rgoal. At the same time, the projection function LocateRegion 
and the edge set E that need to be maintained are also generated. 

The building of a chained region connecting Rstart and Rgoal in the 
workspace and the setting of their corresponding weights are further 
considered. In each planning cycle, the optimal exploration order is 
determined that connects the starting point and the waypoints from the 
set of regions. We use Dijkstra’s shortest path search algorithm to find 
the current expected exploration order. In exploring the expected order, 
the weight of the edge is an extremely important indicator. The 
following four indicators are defined to establish the weight model:  

(1) COV (Rk)− evaluates the exploration coverage of the region Rk by 
the sampling-based motion planner, that is, to count the coverage 
of the vertices in the current roadmap to the region Rk. This is a 
rough but fast evaluation method. The workspace is divided into 
fine meshes and then counts how many subdivided meshes in Rk 
contain vertices in the roadmap.  

(2) FREEVOL (Rk)− evaluates the difficulty of exploring the region 
Rk. After the workspace is decomposed, the configuration space is 
randomly sampled and then the validity of each sampled point is 
checked independently. For example, whether there is a collision 
and/or the robotic arm is reachable, etc. Finally, the sampling 
points in the configuration space are mapped to the workspace, 
and the ratio of the valid sampling points in the region Rk to all 
the sampling points in Rk is taken as the result of FREEVOL (Rk). 
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(3) CONN (Rk)− evaluates the connectivity of points in Rk with 
points in other regions, which is measured by calculating the 
number of times Rk is directly connected to points in other re
gions in the current expected exploration order after begin 
sampled by the sampling-based motion planner. 

(4) SEL (Rk)− counts the frequency of points in Rk used by the al
gorithm when it builds the roadmap. Therefore, this weight will 
cause the sampling-based motion planner to prioritize regions 
that are less sampled and less tried. 

Based on such a weighting model, the region weight can reflect the 
effectiveness of the connected regions in the planning. Before planning, 
the initial weights of the regions are only determined by FREEVOL (Rk). 
That is, only the influence of obstacles on the feasible probability in the 
region is considered. After exploring in the configuration space, the 
weights of the connected regions are updated. This enables the work
space to guide the exploration in the configuration space and also accept 
the feedback from the configuration space. Hence, a feasible solution 
with higher quality can be more efficiently obtained. 

2.2. Configuration space 

In the configuration space, there are two main processes, that is, 
workspace-guided sampling and the weight feedback of discrete regions 
in the workspace. They make use of the results of configuration space 
sampling to feedback and update the weights of discrete regions and 
correct the expected exploration order. 

2.2.1. Workspace-guided sampling 
Traditional sampling-based motion planning algorithms have the 

following shortcomings: 1. Short paths in the configuration space are not 
necessarily short paths in the workspace, which leads to the unintuitive 
and unpredictable motion trajectories of the robotic arm. 2. Environ
mental obstacles are usually defined in the workspace, while sampling- 
based motion planning algorithms focus on configuration space explo
ration and cannot make full use of obstacle information. In order to solve 
these problems, workspace-guided sampling is proposed instead of 
sampling directly in the configuration space. The pseudocode is given in 
Algorithm 2.  

Algorithm 2 Work space Guided Sampling Algorithm 

Input: Upper bounds h1, h2, h3 and lower bounds l1, l2, l3 in the three dimensions of 
the workspace W , Collection of sampled points Q *, distance threshold α.  
Output: valid sampling point or NULL 

1: a1, a2 , a3← Random(0,1); // Generate random numbers in the range (0, 
1) 

2: for i ∈ {1, 2,3} do  
3: ai←(hi − li)ai + li;  
4: end for 
5: h← RandomSO3(); // SO(3) group uniform random sampling 
6: Q ← IK(h); // Inverse kinematics solution 

7: Q valid←∅; 
8: for q ∈ Q do 
9: if isValid(q) then 
10: Add(Q valid,q); // Check if the configuration is valid 
11: end if 
12: end for 
13: qnearest←FindNearestInW(Q text , a1 , a2, a3); // Find the closest point 
in workspace 
14: q←FindNearestInQ(Q valid, qnearest); // Find the closest point in 
configuration space 
15: if ‖qnearest − q‖2 < α then 
16: return NULL 
17: end if  
18: return q  

The algorithm first samples in the workspace. To constrain all degrees of 
freedom of the robot, sampling on the workspace is in fact sampling the 
SE(3) group. The picking robot’s workspace W⊂ℝ3, and W is usually 
bounded in three dimensions, so position sampling is a bounded uniform 

sampling in each dimension. After the sampling points are obtained, the 
analytical solution can be obtained through the inverse kinematics of the 
manipulator, that is, the projection of the sampling points in the 
configuration space. Since the inverse kinematics of the 6-DOF manip
ulator has multiple solutions, it is necessary to select only one solution. 
First, the algorithm needs to check that all solutions are valid, i.e., 
whether collisions will occur. Secondly, the algorithm selects the 
sampled point that is closest to the sampled point in position and selects 
the solution with the closest distance to the sampled point in the 
configuration space as the new sampling point. In addition, in order to 
prevent the new sampling point from still being far away from the 
existing sampling point in the configuration space, it is also necessary to 
set the threshold of the maximum transformation joint angle. 

2.2.2. Configuration space exploration correction 
The principle of configuration space feedback is introduced to cor

rect the weights of discretized regions in the workspace. The configu
ration space uses a workspace-guided sampling approach to search 
within the configuration space of the manipulator to find feasible so
lutions. In each path planning loop, the corresponding exploration paths 
are generated after sampling by the workspace-guided sampling stage. 
In some cycles, it may be difficult for the robot to further explore within 
the narrow obstacle passage, and the configuration is likely to be invalid. 
The configuration space will feedback this condition into the weights of 
the neighboring regions and increase them significantly. After many 
unsuccessful attempts, the exploration information of the configuration 
space is used to update the weights of each discrete region. Then, the 
new expected exploration order is determined using the shortest path 
algorithm and the configuration space is re-explored. 

Next, we consider the continuous layer feedback process in detail 
and start with an example of a 2D simulation environment. As shown in 
Fig. 3, the example robot is in the initial state and its end effector is 
located at the starting point indicated by the asterisk. The green area in 
the figure represents the branch obstacles scattered in the environment 
and the target grasped by the robotic arm is shown as the small tomato in 
the figure. According to the workspace-guided sampling algorithm, the 
initially expected exploration direction connecting the start and end 
points is found, which is shown by the blue connected area. 

Fig. 4 is the result of the robot’s expected exploration order after 
receiving feedback from the configuration space exploration. It shows 
that the robot is unable to reach the target along the expected explo
ration sequence obtained by the first iteration. The reason is that in the 
configuration space exploration process, the robot cannot find the sub
sequent feasible configuration under the path after it explores and 
travels to the position shown in the figure on the left. Hence, the weight 
of this region has to be significantly increased. Then, using the shortest 
path algorithm, a new expected exploration order is calculated that 

Fig. 3. Schematic diagram of the 2-D simulation environment.  
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bypasses the narrow passage in the middle to reach the goal point from 
above. Therefore, proposed planning algorithm has the advantage of 
first trying the closest obstacle avoidance route in the workspace, and 
then automatically switching to other routes when the search cannot 
continue on that route. Since the selection of the new exploration order 
is closely related to the exploration in the previous configuration space, 
the workspace guidance and configuration space sampling achieve a 
collaborative interaction and a coupled improvement. 

3. Materials and experiments 

3.1. Experimental equipment and scenarios 

In order to test the feasibility of the algorithm, the experiments are 
conducted on the dual-arm tomato picking robot, which is shown in 
Fig. 5. The camera is hidden between the bases of the two robotic arms 
and fixed on the picking platform together with the robotic arms. The 
robot consists of two main subsystems: the rail-lifting chassis system and 
the double-arm picking system. The track-lifting chassis subsystem en
ables the dual-arm robot to move along the track. It can also lift the 
entire dual-arm picking subsystem to expand its longitudinal working 
surface. The double-arm picking subsystem is mainly composed of the 
double-arm robot, a sensing module, an end gripper, an engineering 
control computer, and a power supply. Our robotic arms adopt JAKA Zu 
7 machinery produced by Shanghai JAKA Robot Technology Co., Ltd. 
(https://www.jakarobotics.com). 

The actual picking experiment was carried out in a modern soilless 
culture greenhouse. The tomato plants grow upward mainly in the way 
of ambrosia, up to 3 m high, and the fruit can bear 12 layers. The spacing 
between tomato plants is 1.2–1.7 m. One row of tomatoes bears fruit in 
all directions and the interval between each row is about 1 m. The 

ground is erected with tracks with a spacing of about 0.5 m for electric 
lift cars to pass. 

Besides, in order to objectively evaluate the efficiency and quality of 
the proposed planning algorithm, a simulated picking scenario is set up 
as shown in Fig. 6, which requires the manipulator to quickly approach 
the specified target. The robotic system is asked to plan a collision 
avoidance trajectory, under a fast-approaching action, from the initial 
configuration to the specified configuration. In the experiment, a time
out limit of 2 s is set, that is, the planning algorithm will be forced to end 
after 2 s. At each planning, the position of each obstacle block changes 
randomly within a region. Specifically, the position of each obstacle 
block is randomly sampled and generated in a region with a neighbor
hood of 0.1 m radius. These neighborhoods are based on the possible 
locations of obstacles in actual scenarios. The density of obstacles is also 
determined according to the volume ratio of obstacles in actual sce
narios. The experimental scenario artificially ensures that each planning 
problem has a feasible solution. 

3.2. Performance analysis 

Experiments were conducted to compare the results of proposed al
gorithm and the RRT, RRT-CONNECT, TSRRT (Shkolnik and Tedrake 
2009), and KPIECE (Sucan and Kavraki 2012) algorithms. Among them, 
RRT-CONNECT is a bidirectional connection version of RRT. TSRRT uses 
workspace sampling like proposed method, but without workspace 
discretization and configuration space exploration corrections. The in
verse kinematics solutions in the experiment are all solved by the 
analytical method. The path obtained by each algorithm uses a typical 
fast path smoothing algorithm (Geraerts and Overmars 2007) to shorten 
the path as much as possible. 

The above algorithms, including the planning algorithm proposed in 

Fig. 4. Change of the expected exploration order after continuous layers are fed back.  

Fig. 5. The dual-arm tomato harvesting robot.  
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this paper, are based on the open motion planning library OMPL (Sucan 
et al., 2012), and ROS and MoveIt are also used in simulation experi
ments and specific implementations. 

The experimental scene in this section is built according to Fig. 6 in 
Section 3.1, and its settings are the same as described in the introduction 
of Fig. 6. 

The experiment evaluates the computation time and path quality of 
the first feasible path returned by these algorithms. The path quality is 
measured with the Cartesian distance of the end effector to the target in 
the workspace. Each algorithm is repeated 50 times, the results of the 
computation time are shown in Fig. 7 and the results of path quality are 
shown in Fig. 8. 

It can be seen from the experimental results that almost all algo
rithms can produce feasible paths within the specified time. Among 
them, RRT and RRT-CONNECT can produce a path within 0.5 s, but their 
path quality is relatively poor, which is reflected in the long distance 
traveled by the end effector. In contrast, both TSRRT and proposed al
gorithm perform better in path quality. This is because both TSRRT and 
proposed algorithm use a workspace-guided-based approach, which can 
potentially find paths with shorter distances in the workspace. However, 
when sampling in the configuration space, it is easy to produce points 
that are far away in the workspace, which makes the motion trajectory 
of the robotic arm redundant and complex. The experiments also show 
that the planned paths’ quality of proposed method is much higher than 
that of RRT and RRT-CONNECT. In practice, due to the difficulty of 
accurately estimating the position of obstacles, it is difficult to precisely 
control the movement of the picking robot manipulator, and redundant 
movements have potential collision risks. Therefore, RRT and RRT- 

CONNECT with poor path quality are not applicable in complex and 
dynamic agricultural environments. In comparison with TSRRT, the 
planning speed of TSRRT is significantly slower than that of proposed 
method, and it is only comparable to proposed method in terms of path 
quality. 

3.3. Sensitivity analysis of spatial decomposition granularity 

The size of the workspace decomposition granularity will affect how 
proposed algorithm guides the search through the configuration space. 
The experiments are carried out in the planning scenario shown in Fig. 6. 
During the experiment, the workspace is decomposed with different 
granularities, and the three dimensions of the workspace are decom
posed according to different granularities. In the experiment, the lower 
limit of decomposition granularity is 2. Because if the lower limit is 1, it 
is equivalent to no decomposition. The upper limit of decomposition 
granularity is 12. The reason is that the size of the regions after 13 equal 
divisions cannot pass the end of the robotic arm. For each decomposition 
granularity, the planning algorithm is executed 50 times to produce the 
feasible path. The resultant computation durations for all plans are 
shown in Fig. 9. 

The experimental results show that when the decomposition gran
ular size is small (from 2 to 6), the computation durations are 
decreasing. However, when the number of decompositions is larger than 
6, the computation durations are increasing. This means that proposed 
algorithm relies on a suitable workspace decomposition granularity. 
Besides, it can be found that when the decomposition size is in the range 
of 3–6, the computation duration does not change much. This shows that 

Fig. 6. Experimental scene model for planning algorithm performance analysis.  

Fig. 7. Comparison of planning speed of different planning algorithms.  
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proposed algorithm is not very sensitive to the decomposition granu
larity when it is within a suitable interval. 

3.4. Tomato grabbing experiment 

Before conducting the grasping experiment in the greenhouse, we 
used the branch model and the tomato model to build a simulated 
grasping scene in the laboratory and used proposed algorithm to plan 
the path and control the robot. Fig. 10 shows the flow of a successful 
crawling process. 

To quantify the picking results, the following metrics are defined to 
evaluate the performance of picking robots:  

(1) Harvesting rate: The ratio of the number of harvested tomatoes to 
the number of fruits that need to be picked within the workspace 
of the robot.  

(2) Average time: The total time for the picking robot to perform 
picking perception, planning, decision-making and carrying out 
the picking movement divided by the number of picked fruits. 

In the laboratory environment, due to the high level of customization 
in the picking environment, we rearranged the vines and fruits multiple 
times to create multiple distinct working scenarios for experimentation. 
In each working scenario, we conducted experiments using different 

algorithms and performed statistical analysis based on the aforemen
tioned metrics. The results are summarized in Table 1. A total of 8 
different scenarios were used in this experiment, with the number of 
fruits to be picked ranging from 4 to 5 in each scenario. 

From the results, our algorithm exhibits a high harvesting rate, 
which is attributed to the planning in our method within the workspace, 
ensuring a favorable grasping pose. Additionally, compared to other 
algorithms, we have a significant advantage in terms of average time. 
During the experiment, it was observed that the main source of the 
performance gap, when compared to the RRT and RRT-CNCT algo
rithms, lies in the higher quality of the paths generated by our algorithm. 
The paths generated by RRT and RRT-CNCT tend to be more convoluted, 
resulting in a substantial waste of time during arm movement. When 
compared to the TSRRT algorithm, TSRRT exhibits excessively long 
planning time before grasping, with an average delay of approximately 
2 s before initiating the grasping action, thus leading to a significant 
time inefficiency. 

After that, we carried out the grasping experiment in the greenhouse, 
and optimized the robotic arm control and grasping trajectory planning. 
Fig. 11 shows a successful grabbing process in a greenhouse. During the 
experiment, the arms work synchronously. When no fruit can be grasped 
on one grasping plane, the trolley will step through a certain distance to 
the next grasping plane. 

The above indicators during the harvesting process were counted, 

Fig. 8. Comparison of path quality of different planning algorithms.  

Fig. 9. Relationship between workspace decomposition granularity and planning speed.  
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and the results are summarized in Table 2. From the results, the har
vesting rate of robots applying this algorithm reaches 80 %, and the 
harvesting efficiency reaches 10.5 s/piece, which can basically complete 
automatic picking task in complex scenes. 

However, there are still some fruits that cannot be harvested suc
cessfully. Summarize the failure cases in the picking experiment, and the 
main failure reasons are as follows:  

(1) Due to factors such as lighting, occlusion, and random errors of 
the camera itself, the positioning of fruits is deviated, and the 
success rate of picking is reduced. 

(2) Due to the complex occlusion in the environment and the limi
tation of the working space of the robotic arm, it is difficult to 
plan a feasible path for some fruits, resulting in a decrease in the 
picking rate. 

4. Conclusions 

In this work, a local search path planning method was developed in 
the feasible region of fruit-picking robots based on discrete workspace 
guidance and configuration space exploration correction. This method 
makes full use of the target crop information and obstacle information to 

explore a small local region by discretizing the dynamic and complex 
agricultural work environment. This makes planning faster and the 
robot has a greater probability of having continuous motions in the 
configuration space. At the same time, the algorithm discretizes the 
workspace and calculates the channel in the workspace with the most 
exploration potential to guide the expansion direction of the search tree 
in the configuration space. This results in significant improvements in 
the quality of the path generated by the proposed sampling planning 
method. Moreover, this method has a high planning speed, making it 
possible to solve the robot grasping path planning problem in the 
complex dynamic agricultural scenario. The experimental results show 
that in comparison with RRT, RRT-CONNECT, and other algorithms, 
proposed algorithm can achieve the same planning speed as most of the 
existing techniques and has a larger lead in path quality than those al
gorithms compared. 

After simulation and experimental testing, our algorithm has 
demonstrated higher harvesting success rate and shorter average pick
ing time compared to some classical algorithms, providing significant 
advantages in agricultural harvesting operations. In practical green
house work scenarios, the picking robot can efficiently perform 
continuous tomato harvesting tasks and can be deployed for production 
use under specific conditions. However, further improvements are 
needed. For instance, in our experiments, artificial defoliation was 
performed before grasping. If there are still leaves in the experimental 
scene, it will have a certain impact on the algorithm. Besides, proposed 
algorithm does not classify and identify the scene, but plans any scene 
from the beginning. So, we also desirable to enable the proposed algo
rithm to make use of scene knowledge from previous planning. 
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Harvesting 
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Total 
time 

Average 
time 

Our 
method 
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Appendix A. Proof of probabilistic completeness of proposed algorithm 

An algorithm is probabilistically complete, that is, when there is at least one solution the algorithm can find them after sufficient iterations. In order 
to prove this, it is necessary to prove that the algorithm is complete in the static sampling process and in the dynamic path planning process. 

Denote Qp = {q ∈ Q| feasible forward kinematics of q is p} as the set includes all feasible inverse kinematics solutions of point p in the workspace. 
Denote PS(p) as the probability of which the sampler S returns to point p in the workspace after an attempt. Denote Pn

s (p) as the probability that the 
sampler S has returned to point p in the workspace after n attempts. Denote PS(q|p) as the probability that the sampler S return configuration q under 
the premise of returning to the point p after an attempt. Denote Pn

S(p, q) as the probability that the sampler S has returned to configuration q under the 
premise of returning to the point p after n attempts. Denote σ : [0, L] as a path connecting the starting point and the target, where σ(0) refers to the 
starting point, σ(L) refers to the target, and L represents the distance between the starting point and the target along the path σ. Denote U̇(p, δ) as the 
decentered neighborhood of point p with radius δ. 

Based on the properties of proposed algorithm, we envisioned the basic definition that the sampler would have. It should be noted that the 
following definitions are all set in a square discrete workspace region, and can obviously be generalized to the entire workspace. 

Since the sampling points in the workspace are randomly sampled within the three-dimensional upper and lower bounds of the workspace, we can 
have. 

Definition 1. 
(∀p ∈ Ri, p is not in the obstacle area) [PS(p) > 0]

The sampler is redundancy-robust, which is embodied in workspace-guided-based algorithms. We include all feasible inverse kinematic solutions 
into the set Qvalid for investigation, from which we can have. 

Definition 2. (
∀p ∈ Ri, ∀q ∈ Qp

)[
PS(q|p) > 0]

Fig. 11. Robotic tomato picking in the greenhouse.  

Table 2 
Summary table of field harvesting experiment.  

The number 
of fruits to be 
picked 

The number 
of fruits 
picked 

Harvesting 
rate 

Picking 
success 
rate 

Total 
time 

Average 
time 

35 pieces 28 pieces 80 %  81.8 % 294 s 10.5 s/ 
piece  

B. Chen et al.                                                                                                                                                                                                                                    



Computers and Electronics in Agriculture 215 (2023) 108353

11

Then we proceed to the proof. First, we need to prove that proposed algorithm is complete in a static sampling process. 

Proposition 1. Sampling in the workspace is complete, that is, when n→∞, Pn
s (p)→1. 

Proof. For any point p in the discretized workspace region that does not overlap with the obstacle, the probability that it is sampled is PS(p), so the 
probability that it is not sampled is 1 − PS(p). After n attempts, the probability that the point p has not been sampled is (1 − PS(p) )n, it is easy to see that 
the probability that the point p has been sampled in the n attempts is 1 − (1 − PS(p) )n. According to Definition 1, we know that [1 − PS(p)] ∈ (0,1), so 
we can have 

lim
n→∞

[
Pn

s (p)
]
= lim

n→∞
[1 − (1 − PS(p) )n

] = 1 (1)  

Proposition 2. The sampling in the configuration space is complete, that is, when n→∞, Pn
S(p,q)→1. 

Proof. For any feasible inverse kinematic solution q for any point p in the discretized workspace region, the probability that it is sampled is 
PS(p) • PS(q|p), so the probability that it is not sampled is 1 − PS(p)•PS(q|p). After n attempts, the probability that the configuration q has not been 
sampled is (1 − PS(p)•PS(q|p) )n, then the probability that the configuration q has been sampled in the n attempts is 1 − (1 − PS(p)•PS(q|p) )n. Ac
cording to Definition1 and 2, we know [1 − PS(p)•PS(q|p)] ∈ (0,1), so we can have 

lim
n→∞

[
Pn

S(p, q)
]
= lim

n→∞
[1 − (1 − PS(p) • PS(q|p) )n

] = 1 (2) 

Then, we need to prove that proposed algorithm is complete in the dynamic path planning process. 

Proposition 3. In a discretized workspace region, chain connection between the starting point and the target is possible if there is at least one feasible 
connection path σ : [0, L]. Moreover, there is a constant ε, the distance from all points on the path to the workspace boundary and obstacles does not exceed ε, 
then the algorithm can find a feasible path. 

Proof. Suppose there are m feasible paths, denoted as σi : [0, L], i = 1,2,⋯m. Discretize sampling on the m feasible paths are denoted as 

(p, q)i
k=

{ σi(kε), k = 0, 1, 2,⋯K − 1
σi(L), k = K

(3) 

where K = ⌊L/ε⌋. + 1. For any point on these paths except the target, U̇
(

pi
j, ε

)
must be in the workspace and contain the point (p, q)i

j+1. According 

to the conclusions of Propositions 1 and 2, after enough attempts, the algorithm will inevitably sample the point (p, q)i
j+1. The algorithm will verify 

whether the connection between (p, q)i
j and (p, q)i

j+1 is feasible. Since these points are connected by feasible paths σi, this local feasible path will be 
found and added to the roadmap. Beginning from the starting point, a search is carried out according to this procedure and the algorithm can find all 
feasible paths σ : [0, L] connecting the starting point and the target. 

Appendix B. Nomenclature  

W Workspace 

Q Configuration space 
ℛ Discretized workspace regions 
D Set of discretized workspace regions 
V Set of points in the road map 
E Set of edges in the road map 
p Point in the workspace 
q Point in the configuration space 
t Time 
h Upper bounds 
l Lower bounds  

Appendix C. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compag.2023.108353. 
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