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A B S T R A C T   

Acoustic waves offer a non-destructive, safe, and cost-effective means of monitoring the environment, with a 
potential application in soil water content monitoring. However, extracting soil water information from acoustic 
signals is still challenging. To tackle this issue, we have developed a low-frequency swept acoustic signal 
detection device and system. We conducted soil penetration testing using low-frequency swept acoustic signals. 
The swept-frequency acoustic signals passing through the soil were transformed into time–frequency spectro-
gram. Using the Swin-Transformer model, we established a regression model between the time–frequency 
spectrogram of the swept frequencies and the soil water content. Predictions were made both on a laboratory test 
dataset and through field trials using the calibrated model. The results indicate that the RMSE, MAE, and R2 

values between the observed and the model’s outputs of water content (%) for the test laboratory dataset are 
0.191, 0.081, and 0.999, respectively, using the Swin-Transformer model. In the case of the field trials, the 
RMSE, MAE, and R2 values between the predicted and observed values are 6.715 %, 1.829 %, and 0.711, 
respectively. These studies demonstrate that this method is highly effective in predicting soil water content, with 
the best results achieved at a resolution of 20 PPI (Pixels Per Inch) and within the frequency range of 260–360 
Hz. It provides an efficient approach for acoustic soil water content detection, effectively resolves the difficulty in 
building models caused by the single-parameter limitation in traditional acoustic model.   

1. Introduction 

Against the backdrop of the escalating global water crisis, accurate 
and cost-effective soil water content detection devices have become key 
tools for providing services in precision and sustainable agriculture, 
aiming to optimize water use (Nie et al., 2022a). Soil water content 
measurement methods encompass drying-weighing, resistance, nuclear 
magnetic resonance (NMR), neutron, and electromagnetic wave-based 
approaches. The gravimetric or drying-weighing method is precise but 
operationally cumbersome. The resistance method is inexpensive and 
rapid but has a lower accuracy. NMR equipment is costly. The neutron 
method (Altdorff et al., 2023, Howells et al., 2023) is suitable for long- 
term field soil water content monitoring but exhibits significant errors in 
surface soil detection. Additionally, it is expensive and poses potential 
radiation hazards. Electromagnetic wave detection methods, catego-
rized by wavelength, include the radio wave and microwave-based FDR 

method (Li et al., 2020), the TDR method (Qin et al., 2023), and the GPR 
method (Cheng et al., 2023). FDR method is characterized by high ac-
curacy, affordability, and widespread application. The TDR method 
measures surface soil water content but is costly. However, neither can 
directly assess regional soil water content. The GPR method can measure 
a wide range of soil water content but comes with expensive equipment. 
Remote sensing can monitor large-scale soil water content, utilizing 
bands such as microwave (Urbina-Salazar et al., 2023), thermal infrared 
(TIR), shortwave infrared (SWIR), and near-infrared (NIR) for soil water 
content detection. Among these, microwaves exhibit minimal atmo-
spheric interference and extensive applicability. However, remote 
sensing can only detect surface soil water content status, influenced by 
soil texture, bulk density, and vegetation, without the ability to assess 
deep soil water content. The shorter-wavelength gamma-ray detection 
method (Taylor et al., 2023) is suitable for regional soil water content 
detection but is susceptible to soil bulk density. Among the methods for 
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regional soil water content assessment, neutron and gamma-ray 
methods involve radiation risks, GPR is expensive, and remote sensing 
has limited accuracy, making it challenging for widespread use as a low- 
cost and continuous measurement method. Although each method has 
its advantages and limitations, the demand for a low-cost, and envi-
ronmentally stable regional soil water content detection method is 
increasingly urgent in modern agriculture. Therefore, there is a need for 
a more feasible approach that meets the requirements of modern 
agriculture. 

Sound waves, as signals capable of propagating in solid, liquid, and 
gas phases, have widespread applications in fields such as ultrasonic 
detection, non-destructive testing, and sonar detection. For soil water 
content detection, the use of sound waves can be free from the influence 
of soil chemical properties, holding significant potential for develop-
ment. Past research has conducted in-depth theoretical analyses of the 
propagation characteristics of sound waves in soil (Biot, 1956, Brutsaert, 
1964), laying the foundation for subsequent model optimization (Xu 
et al., 2020, Gorthi et al., 2020). Changjie found a high correlation be-
tween the attenuation rate of sound waves in soil and soil water content 
(Chang-jie et al., 2015). However, models constructed using a single 
speed of sound and attenuation traditionally have shown significant 
variations across different soil types. (Xu et al., 2021). The use of 
frequency-sweeping sound signals for soil water detection using atten-
uation information at numerous frequencies, facilitates in obtaining 
more precise and robust models. Nevertheless, fitting the extensive data 
on the relationship between frequency-sweeping signals and water 
content remains a challenging issue. 

In recent years, machine learning and deep neural networks have 
demonstrated unparalleled advantages in fitting relationships involving 
multidimensional and large parameters(Li and Chao, 2021), offering 
new possibilities to address this challenge (Chao and Li, 2022, Li et al., 
2022c). Similarly, they have provided new approaches and methods for 
sustainable agriculture (Nie et al., 2022b, Yang et al., 2022), medical 
data analysis (Li and Ercisli, 2023), and more. In the field of soil water 
content prediction, researchers have successfully used the LSTM algo-
rithm for water content forecasting (Datta and Faroughi, 2023, Li et al., 
2022b), achieving good results through subsequent improvements (Li 
et al., 2022a, Kara et al., 2023, Yinglan et al., 2022). Studies also 
designed a soil layer recognition model based on deep neural networks 
(Jiang et al., 2021) and predicted soil organic carbon using DNN based 
on remote sensing images (Odebiri et al., 2022). Other methods include 
improving the prediction accuracy of soil properties using fractional- 
order derivative technology combined with one-dimensional convolu-
tional neural networks on near-infrared spectra (Liu et al., 2023). Ma-
chine learning has been utilized to identify the spatiotemporal patterns 
of preferential flow (Kang et al., 2023) and construct a comprehensive 
drought monitoring model through deep learning (Shen et al., 2019). 
Deep neural networks have also demonstrated remarkable capabilities 
in the extraction and classification of acoustic features, exceptional 
performance in anomaly detection in time series data (Choi et al., 2021), 
and direct feature recognition using sound data (Romero et al., 2019). 
Hasan proposed deep neural network-based spectral imaging approach 
achieved a highly accurate classifier for fault diagnosis in sound emis-
sion signals (Hasan et al., 2019). Deep neural networks exhibit 
outstanding capabilities in the prediction of soil properties and the 
construction of complex models for acoustic signal analysis. 

Combining the multiple-parameter features of frequency-sweeping 
signals with the powerful modeling capabilities of deep neural net-
works, this study adopts frequency-sweeping sound signals for soil 
transmission detection. It reflects soil water content through attenuation 
information at multiple frequencies and constructs a regression model 
for the relationship between water content and time–frequency spec-
trograms using a deep learning network. This achieves regression pre-
dictions for time–frequency spectrogram of different soil water content 
levels. This study has theoretical and practical value for addressing the 
limitations of existing soil water content detection methods. The main 

research contributions are as follows: (1) We introduce a method for soil 
water content detection based on time–frequency spectrogram of time- 
swept acoustic signals. (2) We design a set of equipment and a system 
for time-swept acoustic signal detection. (3) We establish a regression 
model for the relationship between time–frequency spectrogram and 
soil water content using the Swin-Transformer algorithm and compare 
the impact of different PPI and frequency ranges on prediction results. 

2. Principle and methods 

2.1. Principle of soil water content detection by sweeping acoustic signals 

Different frequency sound waves exhibit varied attenuation charac-
teristics under distinct soil water content conditions. Changes in soil 
water content induce variations in inter-particle forces, leading to dif-
ferences in the attenuation of sound waves. Establishing a connection 
between sound signal attenuation and soil water content is achievable. 
However, the attenuation of traditional single-frequency sound signals 
struggles to adequately capture soil water content characteristics. In 
contrast, a sweep of sound waves over a certain duration can encompass 
multiple frequencies, allowing for the conveyance of more information 
in soil water content detection. Therefore, this paper adopts a frequency- 
sweeping transmission signal for soil water content measurement. The 
time–frequency spectrogram of sound signals penetrating the soil re-
flects the energy attenuation levels of different frequency sound waves, 
establishing a relationship with water content. The detection principle is 
illustrated in Fig. 1. 

2.2. Detection method and model construction process 

The process of using transmissive sweep-frequency acoustic signals 
for soil water content detection is divided into five parts: sweep- 
frequency signal construction, transmissive detection in soils with 
varying water content levels, data processing, model training, and result 
prediction. The specific process is illustrated in Fig. 2. 

2.2.1. Construction of swept acoustic signal 
In this study, sweep-frequency acoustic signals are generated by the 

Analog Discovery 2 portable oscilloscope. The waveform generator of 
the oscilloscope can produce diverse and high-quality waveform signals. 
The computer allows customization of waveform types, sweep time, and 
signal amplitude. Once the waveform is defined, it can control the 
oscilloscope to output the designed sweep-frequency signal. The custom 
sweep-frequency signal is then amplified by an amplifier, and the 
amplification factor remains constant throughout the measurement 
process. After amplification, the sweep-frequency acoustic signal drives 
the low-frequency speaker to produce acoustic, thus forming a high- 
definition sweep-frequency acoustic source. 

The effective determination of the detection frequency range is a 
crucial step in using frequency-sweeping acoustic signals for soil water 
content detection. Experiments were conducted with acoustic sweeps in 
the 20–1500 Hz range for transmission testing. The attenuation of the 
frequency-sweep acoustic signal at a detection distance of 850 mm is 
shown in Fig. 4, where the color depth represents the distribution of 
residual energy in various frequency bands of the spectrogram. It can be 
observed that the signal energy is relatively high in the 50–550 Hz 
range. Excessive signal attenuation can significantly reduce the effec-
tiveness of information carried by the signal. Therefore, we determined 
the efficient frequency-sweep detection range to be 50–550 Hz. Addi-
tionally, during the analysis of frequency-sweep energy, we discovered 
minimal attenuation in the signal around 310 Hz. As a result, we con-
structed continuous frequency-sweep signals in the range of 50–550 Hz 
for 10 s and concise narrow-range frequency-sweep signals in the 
260–360 Hz range for 2 s with 310 Hz as the center frequency. This 
approach fully utilizes numerous parameters to reflect soil moisture 
content while exploring the signal performance of a small frequency- 
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sweep interval. Ensuring consistent frequency density, we constructed 
wide and narrow frequency ranges. During data collection, we acquired 
data separately using these two frequency ranges to determine the 
impact of frequency range on the overall detection results. 

2.2.2. Soil drying condition and detection process 
The detection process has taken place in a constant temperature and 

quiet acoustic environment. The main soil texture under investigation 
consists of 13.20 % clay, 34.44 % silt, and 53.36 % sand, placed in a 
soundproofed soil tanker measuring 1000 × 300 × 300 mm. The 
research examines the variation in soil water content starting from 
(25.09 % mass water content) and continuing until the soil water con-
tent becomes unavailable for plant uptake (6.32 % mass water content). 
To capture the gradual decrease in water content, the study conducts 
measurements at 14 different water content states during continuous 
drying. Water content calibration at each stage is performed through 
multi-point sampling and drying. Immediately after the measurements, 
soil samples are collected from five evenly distributed points within the 
measurement range, with a depth of 200 mm. The soil water content of 
these samples was determined using the MA100Q moisture analyzer, 
utilizing the drying method. The average of the five-point measurements 

represents the soil water content for that specific measurement area. 
Considering the inevitable signal fluctuations in low-frequency speakers 
and the entire acoustic production system, multiple measurements were 
taken at each water content level to create a large dataset, allowing the 
model to distinguish between various states. 

2.2.3. Data processing and time–frequency spectrograms generation 
The sound signals transmitted through the soil are captured by the 

acoustic sensor, and the data acquisition card converts the received 
analog signals into tdms data. A Python algorithm is employed to sys-
tematically extract the sound wave data from the first channel of the 
tdms data, converting it into a CSV format. The sound wave data un-
dergoes bandpass filtering to eliminate noise from both low and high- 
frequency ranges. Subsequently, using the Python audio processing li-
brary librosa, operations such as windowing, Fourier transformation, 
and power spectrogram computation are applied to the time-domain 
audio, ultimately producing the time–frequency spectrogram. 

The time–frequency spectrogram of the frequency-sweeping sound 
signals illustrates the frequency components and their corresponding 
energy levels at different moments. During the spectrogram creation, the 
results of the Fourier transformation are subjected to modulus 

Fig. 1. Principle of detecting soil water content by sweeping frequency acoustic signal.  

Fig. 2. Method and process diagram of detecting soil water content by sweeping frequency acoustic signal.  
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operations, followed by logarithmic transformation into decibels (dB). 
The final presentation is in the form of an amplitude graph. Considering 
the frequency sweep, this study adopts the Mel spectrogram, offering 
higher resolution in the low-frequency region and gradually decreasing 
resolution as the frequency increases. The Mel spectrogram creation 
involves the following steps: first, the signal is framed into multiple 
small-time windows; next, a Hamming window function is applied to 
mitigate boundary effects; then, fast Fourier transformation is per-
formed to obtain the spectral information for each window. The 
amplitude spectrum is converted to power spectrum to enhance spectral 
features, and Mel filters are utilized for filtering, particularly to enhance 
the resolution in the low-frequency range. The specific steps are outlined 
below: 

1.Signal Framing: The audio signal is divided into multiple small 
time windows, or frames; 

2.Windowing: A window function is applied to each time window to 
reduce boundary effects; 

3.Fast Fourier Transform (FFT): The FFT is performed on each win-
dow to obtain the spectral information for each window; 

4.Power Spectrogram: The amplitude spectrum is converted into a 
power spectrum to enhance spectral features; 

5.Mel Filtering: The power spectrum is filtered using a set of Mel 
filters to enhance resolution in the lower-frequency region. 

The specific formulas are as follows: 
The Hamming window function is shown in Eq. 1 

ω(n) = 0.54 − 0.46⋅cos(
2⋅π⋅n
M − 1

) (1) 

In this context, ω(n) represents the value of the window function at 
index n, where n denotes the index of the window’s sampling point, and 
M represents the length of the window. 

The Discrete Fourier transformation formula is shown in Eq. 2 

X(m) =
∑N− 1

n=0
x(n)e− j⋅2π⋅n⋅m/N (2) 

Spectrogram power spectrum is calculated by taking the square of 

the mode for each window power spectrum to get the power spectrum. 
As in Eq. 3 

SPX(m) =

⃒
⃒
⃒
⃒
⃒

∑N− 1

n=0
x(n)e− j⋅2π⋅n⋅m/N

⃒
⃒
⃒
⃒
⃒

2

(3) 

The Mel-filter bank is used for filtering. The more Mel filters in the 
filter bank, the higher the frequency resolution, but it also increases 
computational cost and processing time. Considering various factors, in 
this experiment, the parameter for the number of Mel filters is set to 128. 
Mel filter banks are used to obtain the Mel spectrogram. The Mel filter 
bank used in this study is based on the Slaney-style filter bank. Its pur-
pose is to map the linear frequency range to the Mel scale range and 
evenly distribute these filters on the Mel scale according to the desired 
number of MEL filters. The Mel scale transformation formula for this 
type is as follows, as shown in Eq. 4. 

Mel(l) = 2595⋅log10(1 +
f

700
) (4) 

In this paper, all time–frequency plots are generated using Python 
and libraries such as librosa. The process involves extracting audio 
signal data in CSV format and then creating time–frequency plots. An 
example of such a time–frequency plot is illustrated in Fig. 3. 

Data processing was accomplished through the implementation of 
Python algorithms to perform batch calculations and plotting. The 
temporal data volume of the 10-second swept-frequency acoustic signal 
reached 64 MB. Even after signal processing and data transformation, 
the lossless data volume remained substantial. Consequently, when 
generating time–frequency spectrograms, custom resolutions were 
employed for saving to mitigate data size. Subsequently, datasets 
essential for further analysis were constructed, and a clear demarcation 
between training and validation sets was established. 

2.2.4. Model training and regression prediction 
In consideration of practical applications involving lightweight and 

computational cost, this study has undertaken modifications to the 
lightweight Swin-Transformer deep neural network for image regression 

Fig. 3. Mel time-spectrogram plotted in Python. This figure is a Mel-time–frequency spectrogram drawn by python, where the horizontal axis is time, the vertical axis 
is the frequency, and the color depth in the figure represents the energy of a frequency component in a certain short time interval. The light area is the main 
frequency part of the time–frequency spectrogram, and the other upper multiple color bands are multifold spectral regions. 
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tasks. The selected models underwent subsequent training based on pre- 
trained model parameters. Training was conducted on the training set of 
time–frequency spectrogram datasets with varying soil water content, 
resulting in the development of a high-performing model and the 
identification of key parameters for dataset construction. 

During prediction, the detection signals underwent signal processing 
with optimal parameters. Simultaneously, the signals were processed 
using dataset construction methods that yielded superior prediction 
results. The spectrograms were then input into the trained model to 
obtain soil water content levels. 

3. Experimental setup 

3.1. Soil material characteristics 

The soil used in this study was obtained from a crop experimental 
field located at N44.365◦ latitude and E86.066◦ longitude in north-
western China. The soil texture for this study was determined using the 
hydrometer method. Multiple samples were collected and analyzed, 
yielding average results of 13.20 % clay, 34.44 % silt, and 53.36 % sand. 
The average soil bulk density was determined to be 1.48 g cm− 3 using 
the cutting ring method. Soil water content measurements were con-
ducted using the MA100Q moisture analyzer. This instrument employs 
the principle of the drying-weighing method. During the detection 
process, samples were dried at 105℃, and the water content was auto-
matically calculated. The instrument is equipped with built-in weights 
and a repro TEST function, enabling self-calibration before each mea-
surement. It boasts high precision, with an accuracy of 0.1 mg/0.001 %. 

Soil samples were collected using a dedicated 8 mm diameter sam-
pling tube at a depth of 150 mm. Real-time calibration of the data was 
performed using the detector. Throughout the data collection process, 
no secondary irrigation or overall disruption and reconstruction of the 

soil structure were conducted, aiming to maintain consistency with the 
natural drying process of agricultural field soil. 

3.2. Detection devices and systems 

The composition, specific connections, and functions of the detection 
system are illustrated in Fig. 5. Prior to testing, the low-frequency 
loudspeaker and the sound signal receiver were positioned at opposite 
ends of the soil under test. A computer controlled a digital waveform 
generator to produce the required swept-frequency acoustic signal. The 
digital oscilloscope produced a custom signal to the power amplifier, 
which linearly amplified the signal. Subsequently, the power amplifier 
drove the low-frequency loudspeaker to emit the designed swept- 
frequency acoustic wave signal. The sound signal receiver on the other 
side of the soil under test captured the transmitted swept-frequency 
acoustic signal through the soil. A data acquisition card collected the 
waveform of the sound waves after passing through the soil. The com-
puter performed data conversion, filtering, and generated time-
–frequency spectrograms from the collected signals. Finally, the 
time–frequency spectrograms were inputted into a pre-trained model to 
obtain prediction of water content. 

The specific models and main parameters of the experimental 
equipment are as follows: the preamplifier is the AWA14604 by Aihua, 
with a detection frequency range of 10–100 k Hz, and the sound signal 
receiver is model AWA14412. The swept-frequency acoustic signal is 
generated using the digital oscilloscope function of the Analog Discovery 
2. The power amplifier is the BORIZSONIC PA-01, with a maximum 
power of 100 W. The loudspeaker is a subwoofer by Rei-fan Acoustics, 
with a rated power of 80 W, a frequency response range of 43–2.5 k Hz, 
and a sensitivity of 88 dB ± 3 dB. The data acquisition card is the VK702- 
Pro USB high-speed data acquisition card, featuring 8-channel pream-
plifier inputs, 14-bit resolution, and a maximum sampling rate of 

Fig. 4. Energy map of soil 20–1500 Hz transmission swept frequency acoustic signal(The figure represents the spectrum value and its energy intensity at a certain 
small time period). 
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100ksps. 

3.3. Structure of the soil tanker 

A soil testing chamber was constructed to build a dataset for 
detecting soil water content using frequency-swept acoustic signals and 
optimizing related parameters. The experimental soil chamber used is 
depicted in Fig. 6 and consists of stainless-steel grids, acoustic- 
permeable fabric, waterproof film, soundproof sponge, and structural 
fasteners (note that some simplifications were made in the diagram for 
the grids, acoustic-permeable fabric, and waterproof film). The testing 
platform was divided into four layers from the inside out. The outermost 
layer is wrapped with PE foam to isolate environmental noise interfer-
ence. There was only one circular opening on the speaker side to allow 
the acoustic waves generated by the speaker to pass through, while the 
other five sides were fully enclosed to isolate acoustic. 

The inside of the soundproofing cotton is embedded with a double- 
layer plastic film to prevent water from seeping out of the soil cham-
ber. Multiple stainless-steel grids were fastened together with zip ties to 
form the framework of the soil chamber. Compared to a solid plate-like 
structure, the architecture made of stainless steel grids had a smaller 
surface area that can weaken the propagation of acoustic waves, 
allowing for better air circulation and water permeability, making ex-
periments easier to conduct. The medium with a significant difference in 
hardness and softness between the air and the grids acts as a barrier to 
the conduction of acoustic signals. Connecting multiple stainless-steel 
grids with zip ties, rather than welding them, reduces the transmission 
of acoustic signals. The dimensions of the stainless-steel chamber are 
1000 × 300 × 300 mm. An acoustic-permeable fabric was laid around 
the inner perimeter of the stainless-steel grids’ structure. The chamber 
was filled with the soil to be tested. The acoustic-permeable fabric al-
lows acoustic waves to pass through but confines the soil within the 
chamber. The combination of the acoustic-permeable fabric and the 
stainless-steel grids created a complete chamber structure. On one side 
of the chamber, there was the speaker’s acoustic emission side, facing 
the soundproof cotton with a circular opening reserved for it. The inner 
grids and soundproof fabric form the side of the chamber without 
soundproofing treatment. On the other side, within the plastic film and 
the stainless-steel grid, there was a central 100*100 mm square hole. 
The square hole was excavated inward by 150 mm, surrounded by a 
certain-sized acoustic-permeable fabric for support, and separated from 
the soil by acoustic-permeable fabric. The actual testing distance at the 
square hole is 850 mm. A slightly larger square-shaped PE foam was 
embedded in the square hole, with a smaller hole in the center, slightly 
smaller than the acoustic receiver. During measurements, the acoustic 
receiver was inserted into the small hole to receive the frequency-swept 
acoustic signals passing through the soil, even in the presence of 

Fig. 5. Diagram of the data acquisition system. (a)Low-frequency speaker. The low-frequency speaker is driven by a power amplifier to play the swept frequency 
signal output by analog discovery2. (b)Acoustic receiver. Acoustic receiver receives the swept frequency acoustic signals with different humidity in the soil sample. 
(c)Data acquisition card. The data acquisition card converts the analog signal of the acoustic receiver into a digital signal for transmission to a personal computer. (d) 
Power amplifier. The amplifier receives the signal from the Analog discovery 2 to drive the speaker to emit acoustic waves. (e)Analog Discovery 2. The digital 
oscilloscope function of analog discovery 2 was used to construct the desired swept frequency signal. (f)Personal computer. Define the waveform emitted by analog 
discovery 2, control the acquisition card to receive and save data. 

Fig. 6. The main components of the experiment soil platform. (The above 
picture omits the stainless-steel mesh structure, acoustic permeable cloth and 
waterproof membrane) Sound insulation cotton insulates the leakage of 
acoustic signal interference, and the side of the speaker is hollow to facilitate 
the passage of acoustic signals. The acoustic signal receiving hole is used to 
collect acoustic signals under the premise of noise isolation of the corre-
sponding acoustic signal receiving components. 
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significant noise isolation. 

3.4. Data collection and dataset construction 

Waterproof measures were taken on the constructed experimental 
platform, and the soil was irrigated until it reached saturation. Subse-
quently, with proper measures to prevent evaporation, the excess free 
water was drained. Depending on the soil type and while maintaining a 
certain temperature and anti-evaporation measures, the soil was 
allowed to stand for 1.5 days to reach the maximum water-holding ca-
pacity state. At this point, water no longer freely seeped out. The 
detection system’s acoustic speaker and acoustic signal receiver were 
positioned on opposite sides of the experimental soil chamber. The 
designed frequency-swept acoustic signal was played through the low- 
frequency speaker, while simultaneously, the computer controlled the 
data acquisition card to collect the acoustic signals passing through the 
soil. This process constituted one data collection cycle. To avoid signal 
fluctuations caused by dynamic changes during each cycle of playing 
and collecting the frequency-swept acoustic signal, multiple collections 
were performed for the same water content. All measurements were 
conducted at an average ambient temperature of 20.5 ℃. The detection 
process was maintained in a quiet acoustic environment with an average 
sound level of 23.7 dB, avoiding interference from various types of 
noise. 

After the data collection was completed, soil samples were imme-
diately taken from five evenly distributed points within the soil cham-
ber. These samples were dried and tested using the portable MA100Q 
moisture meter. With this instrument, we can easily measure the mass 
water content of the sampled soil. The average value of three samples 
was used to calibrate the soil water content at that moment, thereby 
completing the acquisition of raw data for one water content dataset. 

After allowing the soil to naturally dry for a period, the same pro-
cedure was repeated. In the end, a total of 3500 frequency-swept 
acoustic signal data points were obtained across 14 different water 
content levels. After generating time–frequency plots and removing data 
points with significant issues, 2776 valid data points remained. These 
data points were used to construct a dataset containing acoustic signal 
data for different PPI and frequency-swept segments. The dataset was 
divided into a testing set and a training set in a 2:8 ratio. The data 
collection frequencies and corresponding water content values are 
detailed in Table 1. 

3.5. Model and training platform 

In order to minimize computation time and save computational re-
sources, a lightweight classification network called Swin-Transformer 
was chosen for model construction. Transformer architecture has 
shown excellent performance in various fields such as speech recogni-
tion, machine translation, and image processing (Vaswani et al., 2017, 
Han et al., 2022). In the field of speech recognition, its fundamental 
principle is to convert sequential audio signals into spectral information 
for feature extraction. The spectrograms used in this study share infor-
mation characteristics similar to speech data, and the algorithm’s 
related structures are suitable for learning and extracting audio spectral 
information (Nie et al., 2023). Additionally, this architecture easily in-
corporates global information into the analysis (He et al., 2022), which 
is crucial as the attenuation characteristics of multiple frequencies in 
time–frequency plots are distributed across the entire image. Therefore, 
this structure is suitable for feature extraction from time-frequency 
plots. 

Furthermore, the Swin-Transformer employs the Shifted Windows 
Multi-Head Self-Attention (SW-MSA) structure, which facilitates infor-
mation transfer between adjacent windows, benefiting the connectivity 
of information in time–frequency plots. This combination of Shifted 
Windows and Self-Attention has demonstrated excellent performance in 
deep feature extraction in image processing (Huang et al., 2022, Gao 
et al., 2022, Ma et al., 2022, Üzen et al., 2022). Hence, this model was 
chosen for feature extraction from time-frequency plots to perform 
regression on soil water content values. Of course, modifications were 
made to the model’s input, loss function, and output to enable it to 
perform image regression on time–frequency plots related to soil water 
content. 

The entire model training platform was based on the Windows 11 
operating system, with a GPU of NVIDIA GeForce RTX 3060, a processor 
of Intel Core i7-12700H 2.3 GHz, and 16 GB of RAM. All model con-
struction and training, as well as validation, were implemented using the 
Python language. The models were built on the Pytorch deep learning 
framework, and the development tool used was PyCharm. The research 
employs Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 
and Coefficient of Determination (R2) as evaluation metrics. The model 
was assessed based on these four metrics to evaluate its performance. 

3.6. Field experiments 

To validate the real-world effectiveness of using time–frequency 
plots for on-field soil water detection, multiple field experiments were 
conducted in the experimental fields where soil samples were obtained 
for this study. Soil water content was tested at five different time points. 
During the tests, precautions were taken to protect the speaker and 
acoustic receiver from dust. They were buried at depths of approxi-
mately 250 mm in different positions within the field, ensuring that the 
center of the speaker and the acoustic receiver were located about 200 
mm below the ground surface. To reduce the impact of excessive 
attenuation during the propagation of acoustic waves on the test results, 
the reference distance for these validation experiments was set at 850 
mm, following the measurements conducted on the experimental plat-
form. Subsequent applications will require data collection at various 
distances to meet different detection requirements. 

The experimental field was tested multiple times, and parameters 
such as actual testing depth and testing distance were recorded. Trans-
mittance tests of soil were conducted using frequency-sweeping acoustic 
signals, and multiple sets of acoustic signal data were collected. After the 
tests, soil samples were immediately taken from the vicinity of the 
testing area, at a depth of approximately 200 mm, at five evenly 
distributed points. Soil mass water content was determined using an 
MA100Q moisture analyzer through the drying method. The average of 
the water content values at these five points was considered as the soil 
water content for the testing area. 

By using the model to analyze the time–frequency plots of soil at this 
water content level, detection and identification results were obtained. 
Through a comparison between the model’s identification results and 
the observed water content values, the practical effectiveness of using 
frequency-sweeping acoustic signals’ time–frequency spectrogram for 
soil water content detection was verified. 

4. Results 

4.1. Prediction results of Swin-Transformer 

The Swin-Transformer model takes images with an input size of 

Table 1 
The continuous variation values of 14 types of soil water content.  

Number of experiments 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Soil water content (%)  25.09  24.60  23.03  23.54  22.73  18.36  15.63  14.46  13.49  11.62  9.93  7.91  6.95  6.32  

K. Song et al.                                                                                                                                                                                                                                    



Geoderma 441 (2024) 116765

8

224x224. When different images are input, they are resized before being 
fed into the model. Images with a size close to the input image size, 
specifically 200x200, were used with various models. The detection 
results on the test set are shown in Fig. 7. 

From Fig. 7, the performance of the Swin-Transformer model on the 
test set reveals that the predicted values are relatively concentrated. The 
predicted values for the 14 water content levels exhibit minimal fluc-
tuations compared to the observed values, with most predictions closely 
aligning with the y = x line. The statistical summary of the prediction 
results is presented in Table 2. Multiple evaluation metrics demonstrate 
excellent performance. 

To validate the effectiveness of the method and model across various 
soil types, we conducted a similar training process on a small dataset of 
sandy soil and loamy clay using the model parameters trained on the 
original dataset. The soil compositions were as follows: Sandy soil (clay 
content 5.42 %, silt content 7.46 %, sand content 87.12 %), loamy clay 
(clay content 35.45 %, silt content 19.41 %, sand content 45.14 %). The 
statistical results of the model’s predictions on the experimental soil and 
the predictions on the other two soil types are shown in the first two 
rows of Table 2. Additionally, we compiled the results of a study con-
ducted by Cao and Xiao on the observed performance of eight types of 
FDR soil moisture detectors (Cao and Xiao, 2024). Cao and Xiao tested 
the performance of EC-5, GS-1, MAS-1, 5TM, 5TE, TEROS-11, TEROS- 
12, and SMT-100 soil moisture detectors. These eight detectors were 
developed by two major manufacturers, METER (USA) and Truebners 
(Germany). They conducted tests on sandy soil (with a physical 
composition of clay 0.25 %, silt 7.87 %, sand 91.88 %) and calibrated 
the measured soil’s true water content using the drying-weighing 
method. The detection capabilities of the eight devices were evalu-
ated. We compiled the performance of the eight detectors under various 
moisture levels, presenting the ranges of their RMSE, and R2 in Table 2 
(Cao and Xiao expressed it in volumetric water content, and for fair 
comparison, we converted the results). 

From the specific predictions and statistical results on the test set, it 
is evident that the Swin Transformer algorithm performed well overall 
in predicting results for various soil test sets. Most predicted values 
closely align with the y = x line. The RMSE value of the model’s pre-
dictions on the experimental soil test set is 0.191 %, indicating that the 
model achieves an accuracy of 0.191 % mass water content in the test 
set. The RMSE value for predictions on the other two soils is also 0.285 
%. Compared to Cao You-song’s statistical results for eight common FDR 
soil moisture detection devices (ranging from 0.453 % to 2.717 %), this 

method demonstrates higher accuracy on the experimental soil and the 
other two soil test sets than the commonly used FDR methods. This 
suggests that this method can achieve high accuracy and has great 
detection potential. 

The results indicate that the soil moisture detection method, 
combining deep neural networks with frequency-sweeping acoustic 
signals, can be applied to various soil types, and the model performs well 
on the experimental soil dataset. Compared to FDR detection methods, 
this method demonstrates certain advantages with the support of large 
datasets and deep neural networks. The Shifted Windows combined with 
Self-Attention structure in the Swin Transformer model exhibit strong 
feature extraction capabilities for time–frequency spectrograms. The 
characteristics of global information and information transfer between 
adjacent parts in this type of structure enhance its feature extraction and 
model fitting capabilities. 

4.2. The results of different swept-frequency ranges 

In this study, swept-frequency acoustic signals were generated using 
a digital oscilloscope. Two sets of signals, one ranging from 50 to 550 Hz 
lasting for 10 s and another from 260 to 360 Hz lasting for 2 s, were 
employed for experimental soil detection. While maintaining the same 
frequency density, the relationship between wide and narrow frequency 
bands and algorithm recognition was observed. Separate training was 
conducted for each frequency band, and the trained models were then 
applied to the test set. 

The regression results of the time–frequency spectrograms and cor-
responding label values were analyzed for both frequency bands. Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R- 
squared (R2) values for the two frequency ranges were calculated. The 
results of the four-evaluation metrics are depicted in Fig. 8. 

From Fig. 8, we can observe that the model demonstrates favorable 
results in the recognition of both frequency ranges. The dataset 
composed of swept-frequency acoustic signals in the 50–550 Hz fre-
quency range exhibits relatively better performance in three out of four 
evaluation metrics, with only the MAE parameter slightly inferior to the 
260–360 Hz frequency range. This suggests that the recognition of 
time–frequency spectrograms in the broader 50–550 Hz frequency range 
is slightly superior to that of the 260–360 Hz range. On the test set, the 
RMSE for the two frequency ranges reached 0.173 % and 0.286 %, 
respectively. 

The results indicate that both frequency ranges yield satisfactory 
predictive outcomes, with slight differences that are not markedly sig-
nificant. In terms of the entire detection process, the 2 s data in the 
260–360 Hz range, compared to the 10 s data in the 50–550 Hz range, 
can reduce computational costs by approximately 80 % in the initial 
data processing stage. Despite the marginal disadvantage in predictive 
results, the advantage in computational cost reduction is particularly 
noteworthy. This is significant for practical deployment and application, 
contributing to a substantial reduction in computation and cost. The 
RMSE values for both frequency ranges suggest that the predictive 
capability of this method can achieve an accuracy of 0.17 % to 0.28 % in 
estimating water content. 

Fig. 7. Comparison of predicted and observed results of Swin-Transformer 
model on the test set. 

Table 2 
Predictive statistics of the model on three soil types and FDR method (MAE 
considers absolute values, making it more stringent compared to MBE.)  

Detection Method. MAE/MBE(%) RMSE(%) R2 

Results of experimental soil 
dataset 

0.081(MAE) 0.191 0.999 

Results of other soil types 
dataset 

0.109(MAE) 0.285 0.995 

Range eight FDR results 0.261 ~ 2.603 
(MBE) 

0.453 ~ 
2.717 

0.417 ~ 
0.924 

Please check Figs. 3 and 4 orders in MS (Interchanged ie, 1st Fig. 4 and then 
Fig. 3). 
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4.3. The results of different PPI 

The value of the PPI parameter is crucial for the model input, as it not 
only determines the scale of the entire dataset but also influences the 
computational speed of the model. Therefore, datasets with five 
different resolutions, namely 10 (100x100), 20 (200x200), 30 
(300x300), 40 (400x400), and 50 (500x500), were constructed. The 
Swin-Transformer model was trained on datasets corresponding to the 
PPI values, resulting in the corresponding model parameters. Pre-
dictions were made on the corresponding test sets. The prediction results 
and statistical summaries are presented in Fig. 9, with R2 values 
consistently above 0.99, hence not explicitly shown in the figure. 

From the prediction results, we observe that the predicted values for 
the five different PPIs mostly aggregate near the y = x line. There is a 
noticeable improvement in the prediction results for the 20 PPI (200 ×
200) resolution. The models trained on the 10 PPI and 50 PPI datasets 
show significantly inferior predictive results compared to the 20 PPI, 30 
PPI, and 40 PPI datasets. Excessively large or small PPI values both 
result in relatively weaker recognition performance. The resolution of 
the 10 PPI dataset drops sharply, while the changes in the 30 PPI, 40 PPI, 
and 50 PPI resolutions are more gradual. 

This indicates that the transformation of original time-series data 

into time–frequency spectrograms with smaller PPI values is highly 
effective in preserving features. The algorithm is capable of training 
robust models based on this transformation. On the one hand, the results 
from the 10 PPI dataset suggest that datasets with excessively low res-
olutions significantly impact model construction and accuracy. In 
comparison, the datasets with 30, 40, and 50 PPI have a milder impact 
on the model. This implies that the model resizing process is less friendly 
to low-resolution data compared to high-resolution data. The applica-
tion of this method requires careful consideration of the crucial value of 
PPI according to the algorithm’s requirements. On the other hand, the 
process of converting the initial large-volume swept-frequency acoustic 
signal time-series data into time–frequency spectrograms, followed by 
feature extraction through windowing and Fourier transformation, and 
then saving as images with custom PPI, effectively and significantly 
reduces the data volume while ensuring sufficient features. The saved 
data values of the images are in a quadratic relationship with the PPI 
values. The file sizes for single images at 50, 40, 30, 20, and 10 PPI are 
only 59.5 KB, 43.1 KB, 26.8 KB, 13.9 KB, and 5.1 KB, respectively. 
Taking the optimal 20 PPI as an example, each image’s data volume is 
only 13.9 KB, reducing the original 63 MB time-series data storage by a 
factor of 4641. 

This method, which combines large-volume data detection with 
small-volume data recognition, significantly reduces data volume while 
ensuring effective features. In practical applications, the preprocessing 
of large-volume data can be rapidly completed by front-end hardware. 
By reducing data volume through this method, small-volume images can 
be transmitted to the cloud via the Internet of Things (IoT), where more 
powerful and larger models on the cloud can yield more accurate results. 
Existing IoT communication services are fully capable of handling the 
data volume of 13.9 KB images. 

4.4. Field experiments results 

In order to validate the practical application effectiveness of this 
method, field validation experiments were conducted on sampled soils 
in the field. Experiments were conducted at five different water content 
levels. Detection was carried out at a distance of 840 mm in a manner 
illustrated in the abstract. The scanning frequency range was set to 
260–360 Hz, and time–frequency spectrograms were generated using a 
20 PPI for the swept-frequency results. The results are depicted in 
Fig. 10. 

The model’s performance in the field experiment is slightly inferior 
to that on the test set, but overall, the predictions still cluster around the 
y = x line. During the field experiment, the model’s predictions for high 
water content soil were slightly less accurate than those for low water 
content soil. The overall prediction results yield RMSE = 2.592 %, MAE 
= 1.829 %, and R2 = 0.711. The model trained on the test bench ach-
ieved an accuracy of 2.592 % in the actual field experiment. The 

Fig. 8. Two frequency bands predicted data outcomes on Swin- 
Transformer models. 

Fig. 9. Comparison of prediction results and statistical summaries for different PPI datasets.  
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precision was comparable to that of the FDR method, slightly inferior to 
its performance on the test set. 

The model’s superior performance on the test set compared to the 
field experiment is expected. There are several reasons for this. Firstly, 
there are differences between the actual soil conditions in the test bench 
experiment and the field experiment, including regional variations in 
physical structure, differences in soil compaction caused by cultivation 
and planting processes, and variations in organic matter content. 
Additionally, there are differences in acoustic environments between the 
soundproofing measures taken in the test bench during dataset con-
struction and the actual acoustic environment in the field. Moreover, 
there is a certain amount of statistical error in the water content cali-
bration based on the sampling method used during dataset construction 
and water content sampling in the field experiment. 

5. Discussion 

This study employs swept-frequency acoustic signals for soil water 
content detection, compressing the data through time–frequency spec-
trograms, and subsequently using the Swin-Transformer model for soil 
water content regression. The model’s results on the test set and in the 
field, experiments demonstrate the feasibility of this method, achieving 
a prediction accuracy of 0.191 % on the dataset, showcasing its potential 
application. A comparison of the detection effects in two frequency 
bands, 260–360 Hz and 50–550 Hz, reveals that, under similar predic-
tion accuracy, the short-wave band exhibits a distinct time advantage. 
Additionally, a comparison of multiple PPI values indicates that 20PPI, 
which is close to the model’s input resolution, outperforms others in 
terms of detection effectiveness, while larger PPI time–frequency spec-
trograms do not show corresponding advantages. Field experiments 
further confirmed the practical applicability of this method. Cao You-
song conducted a study on the actual detection results of 8 common 
FDR-type instruments (Cao and Xiao, 2024). We compared our results 
with his. In contrast, our method and model exhibit certain advantages 
on the test set, but the results from field experiments are close to his 
findings without a significant edge. This indicates that our method and 
model possess robust detection capabilities, and there is ample room for 
improvement in the generalization ability of practical detection. By 
supplementing various datasets, detection accuracy can be enhanced 
without the need to replace the detection equipment. 

The method is capable of soil water content detection, yet there are 
aspects that require further investigation. On one hand, although the 

dataset collection process underwent soundproofing, the acoustic envi-
ronment during data collection differs from that in actual field detection. 
Interference such as low-frequency noise caused by wind passing 
through water pipes and acoustic signals disrupted by the vibrations of 
agricultural machinery engines during real field detection may impact 
the model’s detection performance. Some animal movements and vo-
calizations near the detection area can interfere with the signal, thereby 
affecting the detection results. At the same time, the effectiveness of 
waterproof measures during the entire irrigation process, the impact of 
related accessories on the acoustic signal, and the effects of irrigation 
and heavy rain on the positional displacement of equipment in the soil 
also need further investigation. To enhance the model’s resistance to 
interference, methods such as anti-interference training need to be 
explored for various common disturbances. On the other hand, while 
this method utilizes the signal attenuation to achieve soil water content 
detection and has constructed a substantial dataset, soils with different 
textures, organic content, bulk density,and stone content inevitably 
exhibit more diverse attenuation characteristics. Changes in these pa-
rameters to a certain extent affect the attenuation of the acoustic signal, 
ultimately influencing the effective detection bandwidth. This reduction 
in the effective frequency range makes model construction more chal-
lenging and affects accuracy. Improving the model’s performance and 
generalization requires the collection of more diverse field datasets. 
Furthermore, our research is primarily aimed at monitoring crop 
growth. For the sake of convenience in comparison and considering 
detection speed, we calibrated using mass water content. However, for 
soil hydrology and hydraulic studies, evaluating volumetric water con-
tent might be more relevant. The actual performance needs further 
investigation. Therefore, future research can focus on constructing 
rapidly diverse datasets, optimizing detection devices and systems using 
technologies like the Internet of Things, and developing models with 
stronger generalization, fewer samples, and better detection capabilities 
under complex acoustic environments, as well as exploring the distance 
characteristics of this method. 

Based on the Swin Transformer neural network, the method of con-
structing models for soil water content using soil-transmitted swept- 
frequency acoustic signals’ time–frequency spectrograms demonstrates 
certain advantages compared to various traditional soil water content 
detection methods. Firstly, in terms of methodology, it explores a new 
approach for cost-effective regional soil water content detection. This 
method incorporates more soil water content information into the 
detection process. Relative to the prevalent multi-sensor point-based soil 
water content detection methods, it provides a more reasonable 
assessment of soil moisture content in the penetrated region. The 
detection range of methods such as FDR and TDR are very limited. For 
practical field measurements, a large number of sensors are required. 
Moreover, the sensors need to be arranged reasonably to accurately 
assess the soil moisture content in the area. Despite this, the volume of 
measured data is also limited, and the statistical results are significantly 
affected. Our approach is similar to transmission methods such as GPR 
and neutron. The detection results are influenced by various parts of the 
detection range, encompassing information from each part. In compar-
ison, such methods require fewer sensors for practical field assessments 
of moisture content, making them more reasonable. More importantly, 
the detection system cost of this method is significantly advantageous 
compared to existing regional soil water content detection methods such 
as GPR, neutron method, gamma-ray method, etc. Furthermore, 
compared to traditional model-building methods, Swin Transformer 
neural network exhibit outstanding relationship fitting capabilities in 
this method. The feasibility of deep learning combined with time-
–frequency spectrograms in soil water content detection is evident. It is 
foreseeable that by enriching the variety of dataset types and developing 
rapid real-time data collection devices, the practical prediction accuracy 
and applicability of this method to various environments can be greatly 
enhanced. Finally, the method’s proposal to transform time-series data 
into time–frequency spectrograms reduces the volume of 64 MB time- 

Fig. 10. Predicted and observed soil moisture content from field experiments.  
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series data to 13.9 KB, significantly lowering the data load. With this 
data volume, the use of Internet of Things technology can place the 
prediction part on the cloud, enabling rapid detection of soil water 
content by a massive detection device. 

6. Conclusions 

This study proposes a cost-effective method for soil water content 
detection using swept-frequency acoustic signals. It utilizes Swin- 
Transformer neural network to recognize the time–frequency spectro-
grams of low-frequency swept-frequency acoustic signals from soils with 
different water content.The method demonstrated a detection accuracy 
of 0.191 % on the test set and 2.592 % in field experiments, indicating its 
capability for soil water content detection. This method provides a novel 
approach for the detection of characteristics in porous and multiphase 
media such as soil. 
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Üzen, H., Türkoğlu, M., Yanikoglu, B., Hanbay, D., 2022. Swin-MFINet: Swin transformer 
based multi-feature integration network for detection of pixel-level surface defects. 
Expert Syst. Appl. 209, 118269. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., 
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Proces. Syst. 30. 

Xu, Y., Li, J., Duan, J., Song, S., Jiang, R., Yang, Z., 2020. Soil water content detection 
based on acoustic method and improved Brutsaert’s model. Geoderma 359, 114003. 

Xu, Y., Duan, J., Jiang, R., Li, J., Yang, Z., 2021. Study on the detection of soil water 
content based on the pulsed acoustic wave (PAW) method. IEEE Access 9, 
15731–15743. 

Yang, Y., Li, Y., Yang, J., Wen, J., 2022. Dissimilarity-based active learning for embedded 
weed identification. Turk. J. Agric. For. 46, 390–401. 

Yinglan, A., Wang, G., Hu, P., Lai, X., Xue, B., Fang, Q., 2022. Root-zone soil moisture 
estimation based on remote sensing data and deep learning. Environ. Res. 212, 
113278. 

K. Song et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0016-7061(23)00442-1/h0005
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0005
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0005
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0010
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0010
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0015
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0015
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0025
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0025
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0030
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0030
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0030
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0035
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0035
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0035
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0040
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0040
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0045
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0045
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0050
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0050
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0055
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0055
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0060
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0060
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0060
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0065
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0065
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0065
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0070
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0070
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0070
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0075
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0075
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0075
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0075
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0080
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0080
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0080
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0085
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0085
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0085
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0090
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0090
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0090
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0095
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0095
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0095
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0100
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0100
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0105
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0105
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0110
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0110
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0115
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0115
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0115
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0120
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0120
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0120
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0125
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0125
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0130
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0130
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0130
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0135
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0135
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0135
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0140
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0140
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0145
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0145
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0150
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0150
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0150
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0155
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0155
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0160
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0160
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0170
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0170
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0170
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0175
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0175
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0175
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0175
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0180
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0180
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0180
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0180
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0185
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0185
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0185
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0190
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0190
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0195
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0195
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0200
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0200
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0200
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0205
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0205
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0210
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0210
http://refhub.elsevier.com/S0016-7061(23)00442-1/h0210

	Regional soil water content monitoring based on time-frequency spectrogram of low-frequency swept acoustic signal
	1 Introduction
	2 Principle and methods
	2.1 Principle of soil water content detection by sweeping acoustic signals
	2.2 Detection method and model construction process
	2.2.1 Construction of swept acoustic signal
	2.2.2 Soil drying condition and detection process
	2.2.3 Data processing and time–frequency spectrograms generation
	2.2.4 Model training and regression prediction


	3 Experimental setup
	3.1 Soil material characteristics
	3.2 Detection devices and systems
	3.3 Structure of the soil tanker
	3.4 Data collection and dataset construction
	3.5 Model and training platform
	3.6 Field experiments

	4 Results
	4.1 Prediction results of Swin-Transformer
	4.2 The results of different swept-frequency ranges
	4.3 The results of different PPI
	4.4 Field experiments results

	5 Discussion
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


